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OPTIMAL DESIGN OF ELASTIC CIRCULAR SANDWICH BEAMS
FOR MINIMUM COMPLIANCE?

N. C. Huang and C. Y. Sheu

Department of the Aerospace and Mechanical Engineering Sciences
University of California, San Diego
La Jolla, California

ABSTRACT

Elastic circular sandwich beams are designed for minimum
compliance and given total weight. To treat the problem in a more

realistic manner, the beams are regarded as extensible. Examples

e

- are given for the optimal design of circular rings and semicircular
arches with different end conditions. The calculated optimal com-
pliance is compared with the corresponding compliance of a uniform
beam with identical weight. Finally, the optimal design with stress

bounds is also investigated for the ring problem.

!  The results presented in this paper were obtained in the course of
research supported partly by the U.S. Army Research Office-
Durham under Research Grant DA-ARO-D-31-61008 and partly by
the Air Force Office of Scientific Research, Office of Aerospace
* Research, U.S. Air Force Office under AFOSR Grant AF_.AFOSR
1226-67 with University of California, San Diego.
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1. INTRODUCTION

In the analysis of the deformation of the curved beams such as
rings and arches, we usually assume that the center line of the beam
ie inextensible and the deflection of the beam is entirely due to flexure.
Such an assumption could simplify the analysis considerably and the
error introduced by the assumption is very small if the ratio of the
thickness of the beam to the radius of curvature of the center line of
the beam is much less than unity. However, in the optimal elastic
design of structures for given total weight and minimum compliance,
the design variable is proportional to the strain energy density [1]2.
Therefore, the assumption of inextensibility would lead to a design
with zero cross sections at those locations of vanishing bending moment.
The fiber stress would become infinite there when the axial force does
not vanish. To remedy this deficiency one may stipulate a minimum
cross section constraint (2], or set bounds on the fiber stress, or re-
move the assumption of inextensibility.

The present paper illustrates how the last amendment is applied
to a realistic design. For simplicity, our investigation is restricted
to the design of sandwich beams for which the bending stiffness is re-

garded as proportional to the extensional stiffness.

2 Numbers in brackets designate References at end of paper.




2. BASIC EQUATIONS

Consider the in-plane infinitesimal deformation of a circular,
curved beam with symmetrical cross sections. The thickness of the
beam is assumed to be much smaller than the radius R of the center
line of the beam. The stress-displacement relations of the curved
beam can be derived based on the Euler-Bernoulli assumption [3].
The stress-displacement relations thus obtained are too complicated
to be applied to practical problems unless further approximations or
linearizations are imposed. In the following, we shall postulate that
the fiber stress at any point in the beam with a distance z from the

central surface can be expressed as

~ F Mz
- — 4 2XZ
o - T (1)

where F is the fiber stress resultant, M is the bending moment,

A is the cross-sectional area and I is the moment of inertia of the
cross-sectional area about the centroidal axis. In fact, Eq. (1) can
be derived based on Euler-Bernoulli assumption if terms of the order
of r/R are neglected as compared with unity where r is the radius
of gyration of the cross section of the beam. The stress energy per
unit length of the beam can be expressed by the following area

integral over the cross section:
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Let the inward normal distributed load be p(s), the counter-

clockwise tangential distributed load t(s), the inward normal displace-
ment w and the counterclockwise tangential displacement v. By con-
sidering the equilibrium in moment, radial and tangential forces acting
on an infinitesimal element of the beam as shown in Fig. 1, we obtain
the following equations of equilibrium:

F

§+M'+P=0. (3)
. M’
F--—R‘-‘Ft:O. (4)

The stress displacement relations can be derived from the
principle of minimum complementary energy with Eqs. (3) and (4) as
constraint conditions while the displacements v and w are con-

sidered to be prescribed. We obtain

.:%:“%‘“W . (5)
o= ws (V-W) (6)

where the dot represents the differentiation with respect to the polar
angle §. Notethat (") = -R()’.

Next, let us consider the optimal design of circular curved
beams. The beam is designed to minimize total compliance due to a
concentrated force of given magnitude while the total weight of the

beam is prescribed. The necessary and sufficient condition of local
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optimum is given in [1]. It is
U/B = constant (7n

where U is the strain (or stress) energy per unit length of the beam
given by Eq. (2) and B is the design variable. In the case of optimal
design of sandwich beams with given height of the core, we shall
choose the area of the cover sheets A as the design variable. In this
case, the stiffneas per unit length of the beam is proportional to A
and Eq. (7) becomes the necessary and sufficient condition of global
optimum. The application of Eq. (7) to the optimal design of straight
sandwich beams is given in [4].

If we assume that the curved beam is inextensible, then the
first term in Eq. (2) is dropped. In this case, the design variable A
would vanish whenever the bending moment M vanishes. Note that
at any section with zero value of A, the fiber stress becomes infinity.
Thus the assumption of inextensiblity is no longer valid. In order to
treat our problem in a more realistic manner, we shall regard the
beam as extensible and use the expression of strain energy, Eq. (2).

We shall assume the cross-sectional areas of the top and
bottom cover sheets to be identical. The core is regarded as perfectly
soft and the whole fiber stress is carried by the cover sheets. Since
the thickness of both cover sheets is much asmaller than the height of
the core T, the moment of inertia of the cover sheets can be expressed

approximately as
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1= pRA (8)

where B = T/(2R) is a constant. The curved beam is said to be
slender if B << 1. From Egqs. (2), (7), (5), (6), and (8), the
optimality condition can be expressed in terms of displacement com-
ponents as

BPw-wrR+ (v+w)P =c (9

where c is a positive constant., Note that Eq. (9) is a nonlinear

differential equation of v and w.

3. OPTIMAL DESIGN OF CIRCULAR RINGS AND ARCHES

A circular elastic slender sandwich ring of radius R is de-
formed by two equal and opposite forces P as shown in Fig. 2a. For
given total weight of the ring, we shall find the variation of thick-
ness of the cover sheets such that the deflections at a and b are
minimized. A similar problem of optimal design of plastic rings is
investigated by Prager [2].

Since the optimum ring is symmetrical with respect to the
diameters 6 = 0 and 6 = w/2, we need only consider one-quarter of
the ring in the first quadrant 0 < 8 < w/2. At 0 = 0, the axial
tension is P/2 and the transverse shear is zero. Note that the bend-
ing moment at @ = 0 remains unknown and we shall denote it by M .
At any section within 0 < 8 € /2, the bending moment and the axial

tension are respectively
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M.—.Ml-fzé(l-cosﬁ) , (10)

F::P

3 cos o . (11)

After elimination of M and F from Eqs. (5), (6), (10), and

(11), we obtain

CA(V+W) = —ZF-’EB cos § (12)
AW - V) =-21?E£ph(k-cose) (13)

M
where k=1 - —P-I—:- is a constant to be determined. From Egs. (9),

(12), and (13), the design variable A can be expressed as

ER -1/2 E%; (k - cos 8)® + cos® 9]-1/2 . (49

A 2E

Since the total weight of the core is fixed, to prescribe the
total weight of the beam is equivalent to assigning the total weight of
the cover sheets. Let the density of the cover sheets be p. The total

weight of the cover sheets is

1r/Z a
w=4pR [ Ad6 = lriéLR— V2 ¢ (15)
0
where
/2 -
1 1/3
f = = (k - cos 8)® + cos® 9 d0 . (16)
s )

—— st v it




Fror~ Eqs. (14} nd (15) th.- cros:-sectional area within 0 < § < w/2

. can be written as
w 1 Y3
A = HRT [5F k-cos 0P + cos?o [T . a7

Since the value of k is found to be nonzero, the value of A would
never vanish.
In view of Eq. (17), the general solutions of Eqs. (12) and

{13) are found to be

w = c sin§ + cacose

pRAE 18
¥ ziwfff [k- (14 8%) cosp] [(k- cos)? + B cos® p]~Y/2 sin (6 - )dp,
0

(18)
and

v = €, cos @ - c_sinf + c,

3¢ o0
- —-L—ZI;WI; £ I {k- cosg- [k- (1+p?)cosp]cos (9“9)} (k- cos 0)?
0

+ B cos®p] "1/2 dp.

(19)
The integration constants C» Cyr €, and the value of k can be
determined by the boundary conditions
w(0) = v(0) = w(n/2) = v(n/2) = 0 . (20)
* It is found that
] ¢, =¢, =0 , (21)
7
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/2 -1/3
c, = Z—P'eg‘f,[ 8in@[k- (1+p%)cos 8] [(k- cos8)® + B cos® ] Y ds ,
3 EWB %9

(22)
and the constant k satisfies the following equation:
n/2 -1/3
[ (k-cos @) [(k-cos8)?+p*cos®0] a6 =0 . (23)
0

Note that Eq. (23) can also be obtained directly by integrating Eq. (13)
and using Eqs. (17) and (20). After the value k is determined from
Eq. (23), f, and hence A (f), can be evaluated from Eqs. (16) and
(17) respectively. In Fig. 3, the ratio of A to its average value
is plotted against O in solid lines for B = 0.05, 0.1, and 0.15.

It is found that when B approaches zero the minimum cross-
sectional area also approaches zero and its limiting position is at
6 = -E This is not surprising because in this limiting case the first
term in the bracket of Eq. (14) becomes dominant and the design is
actually equivalent to that of an inextensible ring. One can easily
show that for the optimal design of inextensible rings, k = cos™! (n/4)
and A () is proportional to Ik - cOo8 GI . Accordingly, we conclude
that for a very small value of f, the optimal design of an inextensible
ring is a good approximate design except in the region near the min-

imum cross section. We shall discuss this point further.

To show the efficiency of the optimal design, the deflection
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60 at the point of the application of the force P is compared with that
of a ring of uniform cross section and equal weight. For optimum

rings, we have

EW I [k- (1+P%)cos0] [(k-cosB)? + B2 cos® O]-I/acos 0d8.
ZPpR ﬂ
(24)
For uniform rings, the deflection 6u can be obtained from
Castigliano's theorem as
zgzvn ["5 %‘Ti)"%] : (25)

- These compliances and their ratio are plotted against p in Fig. 4.
It is found that the compliance is reduced by 18-25% between f = 0.15
and 0.05 due to the optimum design.

In the foregoing discussion, we have considered the design of
the circular rings. The optimal design of other types of the circular
slender beams can also be analyzed in a similar manner. Let us con-
sider the optimal designs of semicircular arches deformed by a vertical
force P at the crown, as shown in Figs. 2b and 2c. For two hinged
arches, the bending moment and the axial tension can be expressed in
terms of the horizontal outward reaction H at 8 = 0. For clamped
arches, the bending moment andthe axial tension can be expressed in

terms of two redundant quantities M1 and H at the end of the arch.




Using appropriate boundary conditions we can easily derive the follow-

ing governing equations for the optimal design of semicircular arches:

(a) Two hinged arches

_ w 1 . : 2 1/3
= ———ZPRKL [Eg(cose+hsm9- 1) + (cos 6 + h 8in 8) ] » (26)

w/2 /a
1 1
= (coe 8+ hsinB - 1)® + (cos 8 + h 8in 6)? a8 , (27)
& Io [# ]

w/2
J' ((1+B%)(cos 8 + hsinB) - 1] [(cosB + hsin@ - 1)?
0 -1/
+ B2 (cos O + h 8in6)?] ! asinOdO =0,
(28)
EW§ g w/2 ‘
Fpﬁf: --6'[0 [(cos 8 + hsinB - 1)(1 - cos 8)

- B2 cos 0 (cosB + h sin@)]) [(cos8 +hsinf - 1)?
-1/2

+ p%(cos @ + hsin6)®]  d@, (29)

EWS§
u

&2 3w G-t 5E) 1 55] (30)

{b) Clamped arches

w 1 1/2
A = ?P—Rz [35 (cos 8+ hsin8 +n)® + (cos § + hsine)"‘]- , (31)

/2 1 ) -1/2
g, = I [35 (cos® + h 8inB + n)® + (cos 9 + hainG)aJ a4 . (32)
0

10




w/2
I {(1+P®)(cos@+h 8inf) +n] [(cosO + h 8infh + n)?

0 -1/a

+ B2 (cos@+h 8in6)?] 8in 848 = 0,
(33)

w/2 -1/3
I (cos@+hsin@+n)[(cos@+hsinf+n)+p3(cos+hsinf)?] do = o,
0 (34)
EWS /2

2 2 I [(1+B%)(cos@+h sinB)+n] [(cos@+h ginh +n)?
-1

+ p% (cos @+ h sin@)?] cos 6d6 , (35)

EW§$ 5

Fﬁi“l = l_gpg w(r-2)[(1+P%) w(w+2) - 16]/[(1+B%) n® - 8] . (36)
2H ZMl

In Eqs. (26 - 36), h = 5 and n = BR - 1. The distributions of the

cross-sectional area A of these two arches are shown in Fig. 5 and 6
respectively. The comparison of the compliance of the optimum arch
with that of a corresponding uniform arch is shown in Figs. 7 and 8.
By comparison of our design with the design of an inextensible
beam, it is found that the variations of A in these two designs are
similar, particularly when the values of f is very small. When the
curved beam is very thin the design is primarily governed by the flex-
ure, except in the vicinities of M = 0 where the axial force dominates
and the value of A attains a local minimum. This phenomenon can be
visualized by examining the expressions of A, Eqs. (17), (26), and

(31). In these equations the first term in the bracket is due to flexure

11
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and the second is due to extension. The first term is much larger than
the second when B is smalland 0 is not close to the value where
M=0. When B increases, the influence of the axial force becomes
more evident, the cross section becomes more uniform, and hence the
efficiency of the optimal design compared with the uniform beam

decreases.

4. OPTIMAL DESIGN OF CIRCULAR RINGS WITH AN UPPER
BOUND ON STRESSES

' Unlike the case of an optimal straight beam, the magnitude of
extreme fiber stresses in an optimal ring with cross section as shown

by Eq. (17) is no longer uniform. Instead, it can be written as

- ,=m|;|_|z+£
o 4 1A 21

2PRpf -1 1 -1 -1/2
——WE-{1+Zp |k-cosel[35(k-c039)3+c0939] cosO} .

(37)

In Fig. 9, o, is plotted against 6 for P = 0.05. It is found that

k - _k
T+8 and cos -8’

and minimum value at @ = cos™® k and w/2. The magnitude of these

o, reaches its maximum value at 8 = cos™!

extreme values increases rapidly as f decreases. Therefore, to
make the design more realistic it is necessary to set an upper bound

on the fiber stress.

Therefore the problem is to minimize the overall compliance

12
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C =af eaas (38)
under the condition of prescribed weight i

W = cI Ade (39)

where @ and ¢ are given constants and e is the strain energy per
unit volume. In Eqs. (38) and (39) integrals are taken over the entire

beam. Since ao is not greater than its upper bound o'c , we have

0, -0, = n2(6) (40)

where 7(0) is an unknown slack variable function. By introducing
the Lagrange multipliers )‘1 and X, (6) we have the following vari- ,
ational equation for optimality, i

s {afeado-(cladm.W). [2,00.-0,-1°0)] a8} = o.
(41)

The variations with respect to xl , )‘3, 7, and A furnish Eqs. (39)

and (40),

Agn = 0 (42)

. e e ot

as the Euler equations and

]

‘ [lae - xcrsam+s, [2 (o -0, -n%1a8 =0 . @3

In deriving Eq. (43), the dependence of ¢ on A is disregarded because

of the principle of minimum potential energy. In view of Eqs. (40),

13
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(42), and (43), we conclude that when 7 = 0, we have

¢ =0 (44)

and when 7 # 0, A, = 0 and Eq. (43) reduces to Eq. (7) as the
optimality condition. Therefore, for the optimal design of rings, if

the stress bound oc is greater than the maximum value of co’ i.e.,

0. >) . = 2¥2 pRof/W = @), (45)

then the stress constraint is ineffective and the optimality con-

ditions Eq. (9) governs the design of the entire ring. Hence, (oc) u

is an upper bound of ac below which the stress constraint will in-

fluence the design. On the other hand, if o, is sufficiently small, we
have either the case that the given weight is not large enough for designing
a ring satisfying the stress constraint o2 0 in all sections or the
case that the stress constraint governs the entire design of the ring.

In the latter case, 0'0 = oc and

P 1
A = zqc[plk-cosﬂ*l-cose] . (46)

From the condition of the given weight, we find that
w/2
2PR 1 =
o, = -T-P-‘[o [ﬁ |k - cos 8] + cosGJdO = (oc)l,' (47)
The equation for k can be obtained from Eq. (23) with a modification.

14




. w/2 -
Jl (k - cos 9) [% |k - cos 8] + cos 9] : e = 0 . (48)
0

When o, = (Oc) L’ the design is entirely governed by the stress con-

straint. When oc < (o the given weight of the beam is not

AN
sufficient to fulfill the condition of stress constraint. Finally, when

ac > (oc)l.' the stress constraint does not govern tl.1e design of the whole
ring and the optimality condition, Eq. (9), has to be taken into consider-
ation. Therefore, (cc){, is a lower bound above which both Eqs. (9) and
(44) have to be used to determine the optimal design. In Fig. 10, the ;
dimensionless (oc) " and (oc) L are plotted against p. It is found that
the values of (cc)u and ‘oc)l, increase rapidly as f decreases.

In the following, we are interested only in the problem with o,

in the range (cc)L < o, < (ac) o In this case, each of Eqs. (9) and |
(44) governs the design in some intervals. In view of Fig. 10, it is

reasonable to assume that o, =0, in two intervals 91 €0 < 92 and

6, <6 =6, where 6

2 92 » and Eq. (9) holds in the remaining

intervals of 0 < @ < —. Accordingly, the design variable A will take

vlg ©

the form of Eq. (46) in the former intervals and the form of Eq. (14) in

the remaining intervals. The total weight of the cover gheets is thus

W = 4R {(I:1 * J.:' * .[:/z )%% cq/a[;ﬂ (k-cos@)® + cos® 6]1/a d6
2 4

15

| = e .




+ (I:°+ j:‘)_Z-I;:[% |k - cos@ | +cose]d9} . (49)
1 s

Integrating Eqs. (12) and (13) and using the boundary conditions

Eq. (20) and the continuity conditions
we)=w®'), ve )= v@e and WO )= weh)
i i’ i i i i !
i=1,2,3,4 , (50)

we finally obtain the deflection at 8 = 12’ as

0 0 /2
e = Lo ([0 [0 [ e conm - cono][faoce oo

2 4
-1/
+ cos? 9] * 3<:os 9dé

+ ‘—,%—R (I::+I::)[%5 (k- cos 6)- cose][% |k-cos8|

+ cos 6] -lcos Gde}. (51)

and

/3 (I:1+ .[:a+ J':/z) %, (k-cos §) [%5 (k-cos 0)2
2 4

+ cos® OJ-UB de

R 0 )
+ OLE (I9:+ 're:) %, (k~cos ) [—;- |k-cosb| + cooO]-ldO = 0.
(52)

16
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The unknowns ¢ and k :an be solved from Eqs. (49) and (52). How-
ever, 91, 63, 63, and 9‘ are still undetermined. If these values are
prescribed, the constants ¢ and k can be found from Eqs. (49) and
(52). Hence the design is determined by Eq. (46) in the intervals

61 <66, and g, < 6 < 6,, and by Eq. (14) in the remaining intervals

0<6 < l; The design of this type is optimal among all designs with

O =0 inthe intervals 6, < 6 < 6_ and 9_ £ @ < 9, . Note that in
o Cc 1 2 3 4

this design the value of A is not necessarily continuous at 6 = 91 » 85,

8 6‘. For the optimal design, however, the values of 91 to 64 should

3 ’
make the right-hand side of Eq. (51) a minimum with respect to all

admissible values. This criterion finally leads to a condition that A

must be continuous at 8 = 61 » 8,, 6,, and 6, [see Appendix]. Hence,

3
we have
PR .,/3[1 "2 P ri
3E © /3 [35 (k-c::»sei)ig + cos® Oi] = -ZO_—C B |k cos 9i| + cos Oi].

i=1,2,3,4 . (53)

Equations (49), (52), and (53) can be used to determine c, k, and
Gi(i =1, 2, 3, 4).

A slightly modified Newton-Raphson iteration method is used
successfully in solving these equations. The broken line in Fig. 3
shows the value of A with the stress constraint oc = 0.85 (crc)u for

B = 0.05. It is found that the deviation of A from the corresponding

17
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value in the design without the stress constraint is very small. How-
ever, the difference becomes much larger when ()'c approaches the
value (oc)L =~ 0.78 (Oc)u . The extreme fiber stress o, in the optimal
beam is shown by the broken line in Fig. 9. It is seen that the consider-
able reduction of o, in 8 <0 <6, and 6, < 6 < 6§, does not lead
to a significant increase of o, in the remaining regions.

When B is sufficiently small, say less than 0.1, the distance
A6 between two maxima of o, in the design without stress constraint,
is approximately equal to 28 (Fig. 9). In the design with stress con-
straint, the interval between two regions governed by the stress constraint
is much smaller than A8 as shown by the broken line. Therefore, if
the value of B is very small, it is reasonable to approximate the design
by assuming that there is only one interval, say 6, < 6 < ,, governed
by the stress constraint.

As we have pointed out, the extreme fiber stress becomes infinity
at the point of zero moment in the optimal inextensible beam. Therefore,
to impose the stress bound constraint, one may assume that there is
only one continuous interval, in the neighborhood of zero moment, gov-
erned by the stress constraint. However, this assumption would lead
to a design somewhat equivalent to that of the one-interval-approximation
for the extensible beam discussed in the last paragraph. To obtain

more precise results, one has to assume that there are two separated

18




intervals governed by the stress constraint even for the inextensible

beam. This is due to the fact that the variation of the extreme fiber
stress oo in the inextensible beam is similar to the solid curve in

Fig. 9 for any nonzero value of A in the vicinity of zero moment.

5. CONCLUDING REMARKS

From the above investigation, we have the following conclusions:

(1) A more realistic optimal design can be achieved by con-
sidering the extensibility of the beam. When the thickness-
diameter ratio B of the beam is very small, the influence
of extensibility to the design is restricted to the vicinity of
minimum moment.

(2) The efficiency of optimal design defined by comparing its
compliance with that of a uniform beam with the same weight
depends on B. Smaller value of p leads to a higher
efficiency.

(3) The stress bound condition would influence the design only
if the value of allowable stress is within a certain range.
For large value of allowable stress, the design is entirely
governed by the optimality condition. For small value of
allowable stress, the prescribed weight of the beam is not
large enough to ensure the satisfaction of the stress bound

condition everywhere.

19




(4)

(5)

From the stress distribution in the ring, designed without
the stress bound condition, we may find approximately the
regions where material must be added to satisfy the stress
bound condition. However, in the regions close to the
points of application of the load, material can be deducted
to fulfill the optimality condition.

By imposing the condition of stress bound, the stress in
the regions of increased cross section can bte reduced
congiderably. However, the stress in the remaining

regions of the beam only increases slightly.

20
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APPENDIX

A necessary condition that the deflection § given by Eq. (51) has
a minimum with respect to Gi (i=1,2,3,4)is

% (_3_59) + % ax , 2% ac
36, ~ \30,/c,k ' 3 20,  3c 30,

1

=0, i=1,2,3,4
(54)

where the subscripts ¢ and k indicate the variable held constant

in partial differentiations, and 3k 3c can be found from differ-

BGi' aei
entiating Eqs. (49) and (52) with respect to Oi. After substitution,

Eq. (54) yields
{ e [Elg- (k ~ cos ei)3+ cos?® Gi] b - [—é Ik - cos 6i| + cos Oi]}
x {con 8, [ 77 (k- cos) - cos8 ][ eaF +5(6,-8,-0,46,)
tea (a, + eb)]
+ [—ﬁl-g (k- cos8,)* + cos® ei]ua [ % |x-cosg,| + cose.][-a (a
i i AL
+ eb1)+ ka.1a:s + ealb2

1 2
- pT(k-cusei)l: ekaza.3 + e aab2 + eaa

1
B

+350 -06,-6,+6)a, ]} =0 (55)

where the following notations are used
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r;-‘—._ SO e

e = nnc/(Ecl”) ,

a = (I:i.'. J‘:‘.;. J':/z )_;3 (k- cos@) [-é; (k- cos 8)3 + co.ae]-l/ado ‘
4

o (e L o oo

a, = (I:1+ I:a-l- J:/z )égcosﬂe[-‘;ﬂ- (k- cos8)® + cosae:'-#zde ,
3 4

(56)

a, = (j:1+ j:a +j:/2 )[-pl; (k- cos8) - cos 9][31; (k- cos 8)?
2 4

-1/3
+c0339] / cos §d@,

b = (I:a+ .[:‘>EI’ cose[% |k - cos 6| + cos 9]-2 4 |,
1 3

Blg(l-p) cos® @ [% |k-cos 8] + cos 9]-2 de
e, 1 . 1 -2

+ Io -p-;(l+p)cos e [-p- |k-cos8] + cos 9] de ,
3

and 92 < cos"! k < 8, is assumed. The second brace of Eq. (55)

can be easily shown to be nonvanishing in the limiting

k
- i = = -1
case 0 (oc)u. In this case, 91 9a cos™! —— 5
k

6, =6, = cos"? T+p’ a = b1 =b =0, e= (2)Y® , and the second

23




brace in Eq. (55) becomes

- s (55 ) 3,5, (57)

where Zz and '5'3 are the limiting values of a_ and a

5 Tespect-

ively, which are obviously nonvanishing. Therefore if we set the
second brace in Eq. (55) zero, we shall not obtain the optimal design.
Otherwise, in the limiting case, the expression (57) would vanish.
Hence we conclude that the first brace in Eq. (55) must vanish and

A is continuous at 6 = Gi (i=1, 2, 3, 4) for the optimal design.

24
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i
. F: Axial tension

M: Bending moment

. V: Transverse shear
Fig. 1. Forces and moments on an
infinitesimal arc of the beam.
25

- . I,
i .
|




et . A it o o ST

-goYd1y I[NDIIONWIG pue Sury IendI1) Jo A139w09n

o)

@)

26




‘s8ury xe[noain jewrdg xo0j ssAIny m>m<\$v v

(se9.Bep)g
os ov (0]

‘g 8y

| 1 I

. _.2.228 soas "/
DYUMg00s= g

c00= ¢
oro= g
o= ¢

ot




‘Uo3dag $sox) wirojiuf) jo sBury yiim sFury rewndo jo uostzedwon ‘p ‘81 g
Ye
¢
*110) oro
I | 1 1 1 I i 1 4

€20 |
| 02
g ,
= OM = 3 ,
ng 0 |
N ) i
.oﬂ Buu jowndo®g NEQQN N :
8y n gm3 |
oeo | 1 wsopun g 409 |
|
, |
{08 !
!

¥80 L L 1 00l
, B -||. - e

i i —— 2 o o s o




ettt rimems o i LS = ien et AR Al e AT RN S 1k

894Dy Ie[ndIrdtwag padury-om] rewndo 1oy seainn m>.m<>$ v ‘g ‘Big
(seaubap) g
08 oL 09 0S ot oe 0¢ ol
T T T ! T | | |
S00= ¢
— o10= g
'/ S10=§
Ool'Os= Q ——————
sro= ¢
)
-
ge o
d
1 1 Il L ] 1 1 l

ol

29

.




89Dy I¥[nOIIdtwag padwrer) rewrydo 1oy sasang u>m<\$v v ‘9 'y
(seeubop)g
08 0L 09 0S (0] 4 (0] o< ol
Y 1 T T T T T T 0
S00= g
01'0= - T
¢ro= g ~
00= g In\\ ol
oro= g
SI'o= ¢
a
MOy
v
102
o
chgs )
TV
d
1 1 1 1 1 | 1 1 o.n

e e



i

i

j

i

|

!

i

j

I

og
|
L . -

A L el SIS p e TS S L ey

*u01}03g §80IH WIOJIU() JO 89YIIY YIIm 83Yday pasury-omJ jewrydp jo uostaedwon < 813
e
T-¢
S0 oo <00

Sl0 T T T T o

4s
080 -

70l

s80 | D founido ”m
YD Woun <
"% {si
og o]
8M3

060 |-

0oc

6
d

S60

d °T4

1 1 | 1

31

| U




‘uol3dag §801) WIOJIU( JO S3YDIY Yilm 83ydIy padure;n 1ewridp jo uostaedwor g -8 g

e e s
-
f 1

60

1P

(lll\\l\l..l.l, - ot e ———— e e .t e wmmm - . e e - ——_a




06

‘JUlel) SUO) S$82I3S Inoy3im pue yim sdury [ewydp ayj ur 52138 I2q1y IWIIIXY

(see.bop) g

oS

ov

‘6 Sy

Ol




9A®

A nm<N v\ 0 jo punog aemor pue 1addn -1 -8y
¥-¢
a0 010 G000
0 T Y Y T J ! i _ ¢
8L0 |-
080 - 1"
3%0) punoq semo}
280 - ) punoq s.ddn ]
L5
80 |- d 1°
980 |- A |
ohyug = 0ADy,
5=
d
880 { I 1 1 ! A : : 8

’ IR 3




REL P

UNC LASSIFIED

Stcumx Classification
DOCUMENT CONTROL DATA-RA&D

rSecurity classilication of title, body ol abstract and indexing annotation muxt be entered when the overall report ix classified)

1. ORIGINATING ACTIVITY (Colpo'll. author) 20. REPORTY SECURITY CLASSIFICATION
University of California, San Diego UNCLASSIFIED
Dept. of the Aerospace & Mech. Eng. Sciences 2b. cRouP
La Jolla, California 92037

3 REPORT TITLE
OPTIMAL DESIGN OF ELASTIC CIRCULAR SANDWICH BEAMS FOR
MINIMUM COMPLIANCE

4. DESCRIPTIVE NOTES (Type of report end inclusive dates)
Scientific Interim

S. AU THORNS) (Firet name, middie initisl, last neme)

N. C. Huang and C. Y. Sheu

i. REPORY DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
August 1969 34 4
8. CONTYRACYTY OR GRANT NO. 58. ORIGINATOR'S REPORT NUMBER(S)

AF-AFOSR 1226-67

5. PROJECT NO. 9782.01 Technical Report No. 15

c. 6144501 F 9b. OTHER REPORT NO(S) (Any ofher numbers that may be assigned
this report)
a 681307 AFOSR-69-2136TR

10. DISTRIBUTION STATEMENT

1. This document has been approved for public release and sale;
its distribution is unlimited.

11 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

AF Office of Scientific Research (SREM)

Tech OHfer 1400 Wilson Boulevard

Arlington, Virginia 22209

13 ABSTRACT

"Elastic circular sandwich beams are designed for minimum
compliance and given total weight. To treat the problem in a more
realistic manner, the beams are regarded as extensible. Examples
are given for the optimal design of circular rings and semicircular
arches with different end conditions. The calculated optimal com-
pliance is compared with the corresponding compliance of a uniform
beam with identical weight. Finally, the optimal design with stress

bounds is also investigated for the ring problem.

POR
DD "2™.1473 UNC LASSIFIED

Necnt Classittoatian

Ve Al e A e i

e e N




et 1 —— o A= - [P R

UNCLASSIFIED
ty ssification
LINK A LINK B LiNgK C
KEY WORDS
ROLE wY RoLE wT nNOLE wr a
Optimal Elastic Design "
Minimum Compliance
Stress Constraint
Circular Rings
Semicircular Arches J
L}
i
UNC LASSIFIED
Secunty Classification




3

G
1

—
bl 4

;"m—-— - e - - - r »r
SNe ¢ um‘ Classihi- atien Z
DOCUMENT CONTROL DATA - R § D
Secursty 1avSiti atron of title. body of ADSITA. ¢ and indexing ans 1TATE o At T en’lyvrd when the nerall repes’ 1< classitied)

Wy ORIGING TING &C N1V Ty (Corporete author)

128, REFOR™ SECURITY T_ass Ficavion M o TR

A -
AP University of California, San Diego UNC LASSIFIED « *
Dept. of the Acrospace & Mech. Eng. Sciences | 26 Grour
La Jolla, California 92037 iy
Y WEPORYT T T &

OPTIMAL DESIGN OF ELASTIC CIRCULAR SANDWICH BEAMS FOR
MINIMUM COMPLIANCE

4 DESCRIFRTIVE NOTES (Type of repoet and inclusive dates,
Scientific Interim

% Au THO®. S (First name, middle tnitial. Iast name)

N. C. Huang and C. Y. Sheu

€ REPORYT DAYE 8. TOTAL NO OF PAGES 7h. NO OF WEFS
' August 1969 34 4
%8 CONTRAC - OR GRANT NO 98, ORIG'NATOR'S REPORYT NUMPE R(SH
AF_AFOSR-1226-67

Technical Report No. 15
b PROJECT NO 9782.01

. 6144501 F 0", ﬁ"*:'s.:o:ﬁoelv NOIS) (Any other numbders the! mayv be assigned
. 681307 AFOSR-69-2136TR

10 DISTRIBUTION STATEMENT

1. This document has been approved for public release and sale;
its distribution is unlimited.

e SUPPLEMENTARY NOTES 12 SPONSORING AMILI'TARY ACTIV " v
AF Office of Scientific Research (SREM)
Tech OFAer 1400 Wilson Boulevard
/ Arlington, Virginia . 209

13 ABSTRAC™T

Elastic circular sandwich beams are designed for minimum
compliance and given total weight. To treat the problem in a more
realistic manner, the beams are regarded as extensible. Examples
are given for the optimal design of circular rings and semicircular
arches with different end conditions. The calculated optimal com-
pliance is compared with the corresponding compliance of a uniform
beam with identical weight. Finally, the optimal design with stress

bounds is also investigated for the ring problem.

DD 1473

UNC LASSIFIED




